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1. Php:  Condens. Matter 4 (1992) 3589-3610. Printed in lhe UK 

One-hole Green function, momentum distribution and 
quasiparticle weight of the U -+ 00 ID Hubbard model 

S Sorellat and A F’arolat 
t International School for Advanced Studies, Via Beirut 2, Meste, Italy 
t Dipadmento di F i s i ~ ,  hivetsit3 di Milano. Via Celoria 16, 20133 Milano, lmly 

Received 19 November 1991 

AbslracL Staning from the known Ueh and Wu solution of the one-dimensional Hubbard 
model in the U 3 CO limil. we show how the spin-cliarge decoupling of thc elementary 
cxcilalions is responsible for several peculiar features in one-particle propeaies, such as 
momenlum diarihution, quasipanicle weight and the Green funclion. Ln pnicular we 
analyse in delail the structure of lhe one.hole Green function at half-filling, which has not 
k e n  previously olculated by field theory methods due 10 the breakdown of conformal 
invariance. A rich structure h found wilh branch CUI singularities at w = H s i n  k hut 
no simple poles. Tne non-lrivial dependence on the momentum of the hole allows for 
hole propagation although tlie analytic structure or G(k, w )  is quire different from that 
usually characterizing band insulators. These results provide a precise characterization 
of one-dimensional Moll insulators n e  relalionship ktween the branch N U  of the 
Green function and lhe finite-size scaling of the quasipanicle weight is also discussed 
logether wilh ils implications for the analysis of numerical data. 

1. Introduction 

The recent discovery of high T, superconductors has renewed interest in Mott insula- 
tors, suggesting that the basic physics of hole dynamics in a quantum antiferromagnet 
is still awaiting a completely satisfactory theoretical understanding. The half-filled 
Hubbard model is probably the simplest realization of a Mott insulator, and, as a 
fist step, it is natural to investigate the dynamical properties of a single hole in this 
model. The results might help the interpretation of photoemission experiments in real 
antiferromagnets and would give physical insight about the effects of doping in these 
materials. This problem has been a subject of study since the pioneering work of 
Brinkman and Rice [l] (BR) who argued that the hole motion is strongly inhibited by 
the frustrating effect of hopping OD the antiferromagnetic ordering. Their treatment 
is exact in one dimension when quantum fluctuations on spin dynamics are neglected 
and leads to the inhibition of hole motion, but no convincing estimate on the effects 
of fluctuations has yet been given, even in one dimension. This is probably due to the 
fact that fluctuation corrections in one dimension are non-perturbative and standard 
diagrammatic techniques fail. 

The usual one-body description of the dynamical properties of a hole can be 
applied to the single band Huhoard model at half-filling, provided that antiferromag- 
netic correlations are schematically taken into account by the creation of two effective 
‘Hubbard bands’. In this case, the Mott insulator becomes a conventional insulator 
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where the electron density is such to fill completely the lower band, the upper be- 
ing empty. When an extra particle is injected in the system (hole or  an electron) 
it propagates l i e  a free particle with an effective mass related to the cumature of 
the bands. The first-principles justification of such a picture is, however, an open 
problem, particularly at low dimensions where much more sophisticated theoretical 
approaches are required. In two dimensions the problem has been attacked in the 
strong coupling limit of the Hubbard model (the i-J model) [U], where diagram- 
matic self-consistent approaches and the spin-wave approximation indicate that, for 
finite J ,  the hole propagates similarly to the conventional case. The situation is more 
interesting for J = 0 (i.e. U - co), where in the BR picture, and in the retraceable 
path approximation, the motion of a hole is entirely incoherent due the divergences 
of the one-particle density of states. Such a calculation also show that in a classical 
antiferromagnetic state (NCel state) there is no dispersion for single hole excitations 
and therefore the hole is strictly localized in any dimension. Numerical works [5] 
have qualitatively confirmed this picture although a precise quantitative comparison 
has not been attempted and the delicate question of marginal behaviour for the hole 
propagation has not yet been clarified. 

Due to the difficulties of these problems, it is useful to investigate this issue ac- 
curately in one dimension where it is known that at finite density of holes the system 
is characterized by non-conventional properties 16-14]. Exact results at finite doping 
have been obtained by a variety of techniques, ranging from renormalization group 
approaches, asymptotic expansion of the Licb and Wu wavefunction and field theory 
methods. In particular, the latter route proved vcry fruitful, leading to the deter- 
mination of critical exponents in the whole phase diagram of the model. However, 
both renormalization group and mapping to a field theory become singular precisely 
at half-filling due to the prcsence of a gap in the charge excitation spcctrum. This 
prevents a direct use of these powerful methods for the characterization of hole dy- 
namics in quantum antiferromagnets. The recently developed formalism [9-111 for 
the calculation of physical properties in the U - w Hubbard model instead appears 
to be the appropriate tool for investigating the dynamics of a single hole in Mott 
insulators. 

In this paper, we present results concerning several one-particle properties of the 
U i CO Hubbard model. In particular, the analytical structure of the momentum 
distribution at finite doping is discussed: known results, like the non-Fermi liquid 
nature of the system or the critical exponent of the leading singularity, are derived 
together with less settled features, like the presence of a sub-leading 3 k ,  singularity. 
Moreover the results on the momentum distributions arc related to the vanishing of 
the quasiparticle weight in the thermodynamic limit and the Corm of the finite-size 
scaling of the quasiparticle weight is explicitly found. The fiolon contribution coming 
from the charge degrees of freedom and the spinon term, coming from spin dynamics, 
are identified and their dependence on the doping is discussed. 

Most of the paper is, however, devoted to the study of the dynamics of one hole 
in the one-dimensional Hubbard model. Using wme of the previously obtained re- 
sults, we are able to derive an analytic expression for the one-particle Green function 
G ( k , w )  at half-filling. All the divergences of its imaginary part as a function of 
momentum and frequency are exactly located in the (k, w )  plane. Numerical diago- 
nalization in small rings is also used to show the form of the Green function far from 
the branch cuts and an analytical fit of G ( k , w )  in the thermodynamic limit is given. 

The resulting hole dynamics turns out to be strongly dependent on the choice of 
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the spin configuration of the half-filled Hubbard model. In fact, in one dimension 
and exactly at U = CO 11.51 all spin configurations are degenerate: If a classical, non- 
fluctuating Nee1 state is chosen, we recover the well known BR results characterized 
by the absence of hole propagation. However in the U -t 03 limit the spin degeneracy 
is lifted and the ground state of the Heisenberg model is singled out. This state is 
characterized by strong quantum fluctuations and no long-range order. In this case 
the calculation of the Green function shows that the hole can propagate. in such 
a spin background, although the scattering with spin excitations (spinom) leads to 
the suppression of the poles in the Green function which are replaced by weaker 
singularities (branch cuts). The physical origin of this behaviour is identified in the 
anomalous classification of the elementary excitations for the half-filled Hubbard 
model. In particular, the spin-charge decoupling turns out to be the basic feature 
allowing this kind of hole propagation. 

2. The exact wavefunction in the U -. CO limit 

The onedimensional Hubbard model is defined by the well known Hamiltonian: 

Lieb and Wu [16] have given a formally exact solution for the spectrum and eigenstates 
of the Hubbard nodel at any filling and, in principle, this allows the calculation of all 
physicauy interesting quantities. However this Bethe ansatz solution is unmanageable 
except in the U - CO limit where the analytic structure simplifies and some correlation 
functions can be explicitly calculated. In this limit several authors have shown that 
all the eigenstates can be written in the following 'product' form: 

N Z l . .  ."N,Y, ' . . Y M )  = dJSF(Z1 . .  . Z N M " ( Y I . .  . Y M )  (2.2) 

where zl.. . zN are the spatial coordinates of the N electrons on a L-site ring, 
and the y1 . . . yM 'coordinates' label the positions of the spin-up electrons on the 
squeezed Heisenberg ring [9], Le. on the ring whose sites are just the occupied sites 
of the Hubbard chain. $SF is a spinless fermion state to be specified later and 
& is an cigenstate of an N-site Heisenberg Hamiltonian with periodic boundary 
conditions. Although an exhaustive discussion of the structure of this wavefunction 
has been given in [9], here it is useful to stress that the product form of equation (2.2) 
should not be interpreted as a trivial decoupling between charge and spin. In fact, 
the mapping between the real chain (characterized by the x i  coordinates) and the 
squeezed chain (of coordinates yi) depends on the charge configuration, that is on the 
set {q] which specifies the position of the electrons. A noticeable exception is the 
half-filled Hubbard model ( N  = L) where only one charge configuration is allowed 
in the U -+ a3 limit, and the spinless fermion part of the wavefunction becomes 
trivial. The actual analytical evaluation of physical correlation functions with such 
a wavefunction is a difficult task involving the separate calculation of many-particle 
correlation functions of the spinless fermion gas and of the Heisenberg model, as will 
be shown later. 

As usual, we choose an even total number of particles N = 4n f 2, where n is an 
integer and the number of spin-up electrons equals the number of spin-down ones. 
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In this case the ground state is a nondegenerate singlet of zero momentum. In the 
following, our main mncern will be on single particle properties and therefore the 
precise structure of the ground-state wavefunction of N and N - 1 electrons will be 
used. In particular the charge parts of both +N and GN-I are Slater determinants 
of plane waves, but they correspond m different choices of the allowed momenta. 
More precisely, the N-particle state is characterized by the wavevectors 
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(2.3) 
2n k. > = -+ t $1 

with j ranging in the interval [-an - 1,2n] while the N - 1 particle state has 

and now j belongs to [-2n,2n]. 
The energy of such a state is related only to the occupied spinless fermion levels 

and does not depend on the spin part of the wavefunction. This property holds 
at U = 03 and just in one dimension where the Hamiltonian conserves the spin 
ordering. In this case, the explicit expression of the energy in terms of the previously 
defined momenta coincides with that of a free fermi gas: 

E({kj}) = - 2 C c o s k ,  
I 

(2.5) 

where the sum runs over the N occupied levels. Of course, the ground state corre- 
sponds to the lowest set of ki compatible with the Pauli principle. Following 191, we 
also notice that the wavefunction (2.2) includes the first correction (of order 1/U)  
to the energy levels if the spin wavefunctions are chosen as eigenfunctions of the 
Heisenberg chain. 

3. Momentum distribulion at finite doping 

As a first application to the previous formulae, let us evaluate the one-particle density 
matrix p ( r )  of the Lsite U - CO Hubbard chain at arbitrary filling p = N / L :  

( 3 4  t P ( T )  = (C,,,CO,T). 

The formal expression has been given by Ogata and Shiba [9] and is a direct con- 
sequence of the factorized form of the wavefunction (2.2): we notice that the anni- 
hilation of a real spin-up electron at the site 0 corresponds to the annihilation of a 
holon (i.e. a spinless fermion in equation (2.2)) at sitc 0 and to the removal of a 
spin-up in the spin wavefunction at the 'site' jo = 0 of the squeezed chain. Notice 
that, after this operation, the number of sites of the squeezed chain changes from 
N to N - 1. Analogously, the creation of a spin-up electron at site T is split into 
two distinct operations: the creation of a holon at the Same site in the physical chain 
and the creation of a spin up between the sites j and j f 1 of the squeezed chain 
which now recovers the original N sites. Here j is the number of electrons within 
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the interval ( 0 , ~ )  in the particular configuration we are considering. Therefore, in 
order to calculate the momentum distribution, we have to take the following steps. 

(i) Select all configurations with a futed number (sa,' j )  of electrons in the interval 
( 0 , T ) .  

(ii) Then proceed to the evaluation of the density matrix of the spinless fermion 
state in this subspace: 

ff,W = ( + s ~ l ~ b ( N ,  - j )co I+s~) .  ( 3 4  

Here N ,  = 
(;U) Move the spin-up (which must be present at the origin of the squeezed 

Heisenberg ring) to the j th  site without introducing any phase factor. The latter step 
gives the contribution 191 

nl, the number operator in the intemal [O,?,]. 

Q ( j )  = ;(4Hl(2sj . s>.4 + 1 ) .  ..(?SI . so + f)l4,r) (3.3) 

where we have used the fact that (1s; . S i - l  + :) is the operator which permutes 
the spin at site i with that at site z - 1. Therefire, each subspace of fixed j gives 
an independent contribution to the density matrix of the Hubbard chain whose final 
expression is obtained by summing the terms corresponding to all possible subspaces 
labelled by j :  

(3.4) 

In the following we will not carry out a rigorous evaluation of the two functions 
H , ( j )  and n( j )  but, instead, we will just sketch the calculation of the long-distance 
behaviour of the charge part H F ( j ) ,  which can be done in a straightfomrd (although 
lengthy) way. An analogous treatment of the spin term n ( j )  is much more difficult 
because it involves the evaluation of the many-particle correlation function (3.3) on a 
strongly correlated state. In fact, the interesting choice of obviously corresponds 
to the ground state of the Heisenberg model which is given by the quite involved 
Bethe ansaa wavefunction. %act results can be easily obtained only for small values 
of j .  In fact, besides the obvious result Q(0)  = 1, the exact value at j = 1 can also 
be obtained starting from the knowledge of the ground state energy of the Heisenberg 
model: 

n(1)=(2SO.S,+$),= 1 - 2 1 n z .  (3.5) 

However these results are not of direct interest for the evaluation of the asymptotic 
behaviour of the density matrix because we expect that the relevant terms in the sum 
(3.4) are around j - pr >> 1. In the following we will simply assume that the leading 
long-distance form of Q ( j )  can be written as the product of the rapidly oscillating 
part of wavelength X and the overall smooth function h ( j ) :  

n ( j )  = Re(Aexp(i2nj /X))h( j )  (3.6) 

where A is an undetermined complex constant. The precise form of h ( j )  and the 
value of X will be found indirectly by showing that there is a unique choice of X and 
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Figurr 1. Quasiparticle weight Z(Q) (equation (7)) for Heisebberg rings langing from 
6 10 22 des: symbols. diagonalizalion mulls:  full curve, fit IO Ihe data. 

h ( j )  consistent with thc known singularity [7-111 of the momentum distribution near 
the Fermi wvevecror. 

In order to evaluate the long-distance behaviour of the charge part, we notice that 
the sign of H , ( j )  can be determined performing a Wigner-Jordan transformation on 
the free spinless fermion gas. In fact, the positivity of the hard-core boson ground 
state, implies that H , ( j )  = (-)JPr(j) where P,( j )  is a positive definite function. 
Therefore P,(j) can be interpreted as a probability function and the calculation 
of p ( ~ )  is formally quite similar to that of the spin-spin correlation function [lo]. 
Following the same procedure and using the asymptotic expression (3.6), we end up 
with the following largc distance form of the density matrk 

~ ( r )  - h(pT)ReC,(2T/A) (3.7) 

where p = NIL is the mean density and 

The asymptotic behaviour of equation (3.8) for largc distances can be calculated 
by taking its continuum limit. As shown in appcndk A, the calculation is most 
conveniently done in the formalism of Mattis and Lieb [17] with the result: 

c r 9  ( - J, ~,~l(q-”)~‘~-(it(v~/2*’)-(q/s)) + B2eilqtt .s)prT-( l t lq’ /?sz)t(q/n))) ,  

(3.9) 

This expression, together with (3.7), gives an oscillatory behaviour to the density 
matrix at wavevector k = p((2n/A) + T). In order to reproduce the expected kF = 
p “ / 2  singularity of the momentum distribution, we must have A = 4. The h o w n  
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exponent of such a singularity 8 = is also reproduced Z the smooth function h ( j )  
has a power-law decay of the form h ( j )  - j - ' f * .  These consistency requirements 
allow the indirect evaluation of the spin term Q ( j )  which will be crucial for the 
understanding of the hole dynamics in section 4. ?he asymptotic behaviour of the 
spin term derived from this calculation is, therefore, 

Re[Aexp(irrj/2)] 
d7 W) .- 

I-m 

This expression is consistent with the exact diagonalization results from Ogata and 
Shiba 191 on a 26-site Heisenberg ring. Further numerical evidence is shown in 
figure 1 where the Fourier transform Z(Q) of n(j) (see equation (4.21)) is plotted 
for Heisenberg rings of several sizes, ranging from 6 Lo 22 sites. Equation (3.10) 
would imply a singularity of Z(Q) at Q = h/?- of the form: 

(3.11) 

However, exactly at Q = T/?- instead, Z( Q) has a much slower decay: 

Z(Q = i l r / 2 )  - L - l f 2 .  (3.12) 

A fit to diagonalization data, consistent with equation (3.11), is also shown in figure 1 
substantiating the previous asymptotic behaviour (3.10). 

Inserting equation (3.10) into equation (3.6) we get the final result for the density 
matrix: 

(3.13) 

which implies the presence of a subleading 3kF singularity in the momentum distri- 
bution with exponent 8 = i .  Such a singularity was first proposed [9] on the basis of 
accurate numerical computations and later justified on theoretical grounds by use of 
conformal invariance [IZ] and diagrammatic methods (13). The present calculations 
shows that the feature at 3k, is intimately related to the leading (i.e. kF) singularity 
and originates from the same mechanism involving both the structure of the charge 
and that of the spin part of the wavefunction. 

The decoupiing between charge and spin, implicit in equation (2.2) gives infor- 
mation about the role of the spin degrees of freedom in the determination of the 
singularity in the momentum distribution. Note that  every Fourier component of the 
charge part C,(q) is characterized by a diffcrent exponent in  equation (3.9) which 
varies continuously with q.  On the other hand, the antiferromagnetic spin ordering 
selects the particular wavelength X = 4, picking up  only one Ehrier  component of 
this function and leading to the simple power-law behaviour (3.13). 

4. One-hole Green function 

The dynamical properties of one hole in the U - M Hubbard model are described 
by the one-hole (spin-up) Green function; 

G ( ~ , U )  = ( ~ o i c ~ . , , ( w +  - H -ih)-lck;Tl+o) ( 4 4  
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where Qa is the non-degenerate ground-state wavefunction (of zero total momentum) 
of the undoped system and E,  is its energy. Note that, since the half-filled ground 
state is a singlet, the one-hole Green function does not depend on the spin indices. 
Therefore we can focus our analysis on the spin-up component of the Green function. 
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In the following we use the Lehmann representation [IS] of G: 

where the spectral weight A ( k , w )  is defined as 

(4.3) 
1 

A ( k w )  = - ImG(k,w) 7r = ~ I ( d ~ ~ l c ~ , , l @ ) l ? 6 ( ~ -  E,) 

and I$!) is a complete set of eigenfunctions of the U - 03 Hubbard model with one- 
hole. Here and in the following, energies are referred to the half-filled ground-state 
energy. 

The energy spectrum and the degenerdcy of the States at half-filling and in the 
case of one-hole immediately follow from equation (2.5): At half-filling ( N  = L) 
and U = 03, the ground state has E, = 0 and is highly degenerate. The charge 
part QsF of the wavefunction is just a constant while any spin configuration 4" is 
allowed. Br inhan  and Rice found the exact one-hole Green function for a particular 
choice of b,,: a Niel spin background, which does not include quantum fluctuations. 
However this choice of spin state is not fully satisfactory because the degeneracy of 
the Hubbard ground state is lifted as soon as U is finite, the long-range order is 
destroyed and spin correlations are described by the ground state of the Heisenberg 
chain. In order to understand the role of spin fluctuations in the characterization of 
hole dynamics, we will compare two choices Cor c&,: Niel and Heisenberg states. 

The energy and the wavefunction of the generic one hole eigcnstate at U = 03 

are slight generalizations of the ground-state results (2.4), (2.5). In particular, in an 
L = 4n f 2 ring, the spinless fermion wavefunction is a Slater determinant of plane 
wave states characterized by the set of L - 1 wavevectors: 

k, = 1 / L ( 2 7 r j +  Q )  (4.4) 

where j is an integer belonging to the interval [-( L / 2 ) , (  I,/? - I ) ]  and the phase 
shift Q is an integer multiple of ? x / (  I, - 1 )  and coincides with the total momentum 
of the corresponding Heisenberg wavefunction p,, in equation (2.2). Therefore Q 
can be considered as the 'spinon' momentum, relative to the half-filled system. The 
total momentum k of the state is related to the position of the (unique) 'hole' k, in 
the { k , ]  distribution by 

(4.5) 

The latter equation can be interpreted as a momentum conservation rule for the 
two elementary excitations. The energy spectrum o l  one hole is given by E ,  = 
-2 Cii,+,., COS( k;) which can also be expressed in terms or the holon momentum: 

E k , Q  = 2coskh = - 2 c o s ( k -  Q). ( 4 4  
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According to equation (4.6), the energy spectrum only depends on the holon mo- 
mentum. This result is d i d  just precisely at U = w: At finite, large U ,  a non-zero 
superexchange coupling J = 4 / U  appears and a contribution 

e , ( Q ) =  J ( ( ? r / 2 ) c o s Q + 2 l n 2 )  (4.7) 

has to  be added to equation (4.6) besides a term - J l n  2c0s(2kh) coming from a 
threesite interaction. The precise form of this energy shift comes from the expec- 
tation value of the Hubbard Hamiltonian ( H )  at strong coupling on the state (2.2). 
Following [9], ( H )  can be related to the density correlation function of a spinless 
fermion gas and to the ground-state energy of the Heisenberg ring of N = L - 1 
sites, with momentum Q: 

( H )  = -2cos(kh) + LJ(+HISo .SI - ~J+H)(&FlnOnll&F) + (three-site) (4.8) 

The charge factor in the previous expression a n  be easily evaluated using the fact 
that ($sFlnon,l@sF) = 1 - 2 / L .  The spin energy per site of an odd chain can be 
calculated by solving the Bethe ansatz equations for large size 1191 

(&IS0 -SI - = - I n  2 + ( r r / 2 L ) c o s  Q + o( 1 /L)  

with -(?r/2) < Q 6 (?r/2). Analogously the three-site term contribution involves 
191 a different spinless fermion correlation function 

(~sFI t ioc i l cF , I~sF)  t = - e * 1 2 k h l L  + o i  I / L ) .  

Collecting all these terms we get the previously mentioned results for the excitation 
spectrum at first order in J .  It is noticeable that an analogous calculation exact for 
J = 2 [19] gives exactly the same Q-dependence for the spinon excitation. In fact 
even in this case, as a consequence of spin-charge decoupling the energy can be 
witten as a sum of a spin cs and a charge ch contribution: 

Ek,Q = Eh(kh) + E , ( & )  (4.9) 

where c, coincides with our perturbative result for J = 2 (the numerical factors in 
front of cos Q become identical at this J value). This suggests that our calculation 
for the spin excitations has a general validity beyond the perturbative regime. 

In order to proceed to the determination of the spectral function A(k ,w) ,  the 
generic matrix element appearing in equation (4.3) has to be evaluated. Clearly, the 
one-hole state I&') = $4) . q5hh must have total momentum k, the state /?,bo) having 
zero momentum. By performing a Fourier transform on c k , , ,  we get 

( & w k , ~ l ~ o )  = f i ( W ) I c * = o , ,  I@) (4.10) 

where an arbitrary site has been chosen as the origin of the chain. Now we are ready 
to exploit the (real space) factorization property of the U - 00 limit wavefunction 
(equation (2.2)). As usual, the annihilation of a spin-up electron at site E = 0 gives 
rise to the annihilation of a holon at the Same site and to the removal of the spin 
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at the origin of the corresponding Heisenberg chain. Therefore the real space matrix 
element factorizes: 

S Sorella and A Parola 

(~,h(~)ICz=0,,l1CI0) = ( @ ; k = o l @ d ~ o .  (4.11) 

The explicit evaluation of the charge part is straightfonvard and gives: 

(~;; lc*=old4F) = 1 / f i  (4.12) 

while the calculation of the spin part (ao) is much more complicated due to the 
structure of the Bethe ansaa Heisenberg wavefunction. Formally it can be witten as 

Qo = ( L -  I,-&9;=o[L,o), (4.13) 

where the state IL, ni), represents an eigenstate of the Heisenberg Hamiltonian 
on  an L-site ring with total magnetization m. The matrix element (4.13) must be 
interpreted as the overlap between the state of the b i t e  chain obtained by flipping 
the spin-up at the origin, and the state of the Lsite chain with a fued spin-down at 
the origin while the spins on the other ( L  - 1)-sites are distributed according to the 
amplitude IL - 1 ,-;). 

If this factorization is used for the evaluation of the spectral weight (4.3), we 
immediately obtain 

A ( k , w )  = C Z ( Q ) & ( w -  EL.,Q) (4.14) 

are given by equation (4.6) and the quasiparticle weight 

Q 

where the energy levels 
Z( Q) is formally given by 

(4.15) 

The sum in equation (4.15) rum over all the eigenstates I L- 1 ,  -4)  of thc Heisenberg 
chain of Iixed total momentum Q. In fact, the momentum and frequency arguments 
( k , w )  in the spectral function fvc the holon momentum k,, and the phase shift Q 
via equation (4.6). The fact that the sum (4.15) runs over a large subspace of states 
simplifies the calculation allowing for a formal rcsummation of (4.15). Using the 
completeness of the 1.L - l , - k )  states in the subspace of futed momentum Q and 
introducing the projector onto the subspace of total momentum Q of the 
( L  - 1)-site Heisenberg ring, equation (4.15) becomes 

Z ( Q )  = (0, LIs:=,p~-’s;=,IL,O),,. (4.16) 

The two operators .St and S- can be easily eliminated by noting that Sixo commutes 
with the projector operator Pi-’ and that the Heisenberg ground state is a singleti. 

Z ( Q )  = i(O,LIP&-’IL.O)H. (4.17) 

t nihis expression h also valid in rhr care 01 a NCel slaw although il is no1 a spin singlel. 
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By definition, the projector 'F'6-I is related to the translation operator q?,L-l) on 
an ( L  - 1)-site ring, which must be interpreted as the original L-site ring wthout the 
site at 2' = 0. 

(4.18) 

The explicit expression for the translation operator T(l ,L- l )  in terms of spin operators 
is 

T ( ~ , L - l ) = ( 2 s 1 * s L - I  + +  )...(2s*.s1t+). (4.19) 

This form can be further simplified by using the relation between the translation 
operators on the (L - 1)-site and k i t e  rings: 

( q l , L - l ) ) J  = T O , j ) ( % , L - I ) ) J  (4.20) 

and T(o,j, is just the operator appearing in equation (3.3) as can be easily verified. 
Collecting all terms, the quasiparticle weight Z ( Q )  (4.17) can be written as 

(4.21) 

The exTra factor (-1)J comes from (4.20) and is a consequence of the finite total 
momentum ( P  = T )  of the Heisenberg ground state 011 a (471 f 2)-site ring. The 
function Q ( j )  h equation (4.21) coincides with the one previously defined (equa- 
tion (3.3)) 

Q(A = ( 0 ,  LlT(O,j)lL9O)H (4.22) 

whose long-range behaviour has been determined in section 3 (equation (3.10)). 
It is interesting to compare the two equivalent expressions for Z ( Q )  we have 

obtained: equations (4.15) and (4.21). In particular, the representation (4.15) suggests 
a physical interpretation of the oscillations we have previously found in Q ( j ) .  Such 
oscillations can be related to the presence of a spinon pseudo Fermi stirface located 
at &7r/2. In order to clarify this statement, notice that, from the exact solution of 
the Heisenberg chain on a 4n f 1 ring [20], only one eigenfunction of fuced total 
momentum Q is characterized by real Bethe ansatz pseudo momenta kJ as long as 
IQ1 < x / 2 .  Instead, no real solution is present for IQ/ > n/2.  From a physical point 
of view, complex solutions are usually thought of representing collective modes not 
related to the elementary (i.e. one-particle) excitations of the system. Therefore it is 
expected that they are orthogonal (in the thermodynamic limit) to the state obtained 
by simply removing an electron, thereby giving no contribution to the quasiparticle 
weight Z ( Q ) .  This would result in the vanishing of Z ( Q )  outside the interval 
IQ/ < 7 r / 2 .  This expectation is clearly confirmed by the diagonalization results 
of figure 1. These data also show that finite-size effects are not relevant for this 
quantity and the only singularity in Z ( Q )  occurs at Q = &7r/2 in agreement with 
our argument. Due to equation (4.21). this singularity of %( Q )  at Q = * r / 2  gives 
rise precisely the long-range oscillations in n ( j )  which have been found in section 3. 
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The expression of the spectral weight (4.14) is valid for a finite system. In the 
thermodynamic limit, the fine structure of the energy levels is washed out and A( k , w )  
is not a collection of D i m  delta functions any more. Mathematically this corresponds 
to a coarse graining over the energy levels [IS] in a small energy interval around w :  

I w t 6  
A(k,w)- l im [ i l  dwr A(k,w/) 

6-0 
(4.23) 

which gives 

A(k,w) = (L - l ) [ z ( Q + ( k w ) )  + z(Q-(k,w))lN(w). (4.24) 

Here Q * ( k , w )  = kkaarccos(-w/2) and N ( w )  coincideswith the holon density of 
states: 

1 1 
N ( w )  = - 

2 x  m. (4.25) 

The spectral weight A( k, w )  can now he expressed, quite generally, in terms of n(j) 
by use of equation (4.21). The real space Green hnction then follows from the 
inverse Fourier transform of equation (4.2). With our choice (4.1) of the path in the 
complex w plane, the Green function vanishes for 1 < 0 while for t > 0 is given by 

G(r , t )  = i n ( r ) e x p ( i x ( r  2 + 1 ) / 2 ) J , ( 2 t )  (4.26) 

where J ,  is the Bessel function of ordcr T. Again, the frcquency dependence. of 
G(r,  w )  is explicitly given by the Fourier transform of (4.26) independent of n(j). 
For every r > 0 the result is 

(4.27) 
i exp(irarccos(w/2))  
2 G(T,w)  = -Q(r) ~ -.-.. ,IIYL_.I.l ...., ~ , . ,~ ~ 

for w2 < 4 , and 

1 
2 

G ( r , w ) =  - ( ~ g n w ) ~ ~ ~ Q ( r ) ( u r ~ - 4 ) - ~ / ~  (433) 

for w2 > 4. 
Up to this point, we have not used any specific property of the Heisenberg 

ground state whose structure only enters the Green function through the function 
n(j ) .  Therefore, equations (4.26)-(4.28) are d i d  for a wide class of spin states 
provided the appropriate function n ( j )  (3.3) is used. For instance, in the case of the 
Nkel state n(j) can be easily computed: 

n ( j )  = 6 j ,o  (Nkel). (4.29) 

This result, when substituted into equation (4.27), gives rise to the well known BR 
expression: 

G ( k , w )  = 1/2-. ~(4.30) 
~~ 

~ - ~ ~~~ ~ ~~ . - . .. ~~ 
~~ 

This form of the Green function has several peculiar features: 
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W 

Figure 2 Spectral weight in the thermodynamic 
momenta I;. 

limit as a function of w for different 

(i) It is completely incoherent with edge singularities at w = 12. 
(ii) It is independent of k showing that the hopping of the hole is inhibited by 

the (rigid) antiferromagnetic order. 

However it is not clear whether these results are modified by quantum fluctuations 
in the spin background or, in other words, by scattering with spin excitations. 

In the case of the Heisenberg ground state, the .howledge of n(0) (n(0) = 1) 
allows the calculations of the on-site real-space Green function (density of states) 
which coincides with the general result of RR: 

(4.31) 

while n(1) (equation (3.5)) gives an exact expression for the Green function at 
nearest neighbours. For large distances, the asymptotic result (3.10) can instead be 
used in equations (4.26)-(4.28). More interestingly, equation (3.11) implies that the 
quasiparticle weight Z( Q) always vanishes in the thermodynamic limit preventing 
the formation of a quasiparticle peak (i.e. a pole) in the hole Green function. This 
has to be contrasted with the conventional picture of a band insulator which is 
shown to be violated by the one-dimensional Hubbard model at half-filling. However, 
the divergence of Z(Q)  at Q = f r / 2  (equation (3.11)) gives rise to branch cut 
singularities in the Green function at 

w ( k )  = f2 sin IC. (4.32) 
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Around this line of singularities, the spectral weight behaves as 
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A ( k , w )  - Iw- w(k)I-'/* (4.33) 

A ( k  = f n / 2 , w )  - (2 - lwl)-3/4 

except a t  k = kF = f r / 2  where 

(4.34) 

while the general structure of the spectral weight for the low-lying excitations ( I C  - 
f ? r /2w - - 2 )  has the unusual scaling form 

A ( k , w )  - [ I k ~ ~ / 2 1 ( 2 + w ) + ( 2 + ~ ) ~ / ~ ] - ' / ~ .  (4.35) 

A plot of the spectral weight for selected values of the momentum k is prcsented 
in figure 2 where a fit to the numerical data of Z(Q) in small clusters has been 
used. More precisely, we have considered a simple analytical representation for the 
thermodynamic limit of (L- 1)Z( Q) consistent with the asymptotic behaviour (3.11): 

where the parameters A = -0.393 and B = 0.835 have been analytically deter- 
mined via equation (4.21) by use of the exact results Q(0) = 1 and Q( 1 )  = 1 - 2  In 2 
(equation (3.5)). As can be seen in figure 1 this approximate analytical representation 
accurately reproduces the exact d u e  of the quasiparticle weight in small rings. There- 
fore equation (4.36) can be usefully applied to the evaluation of the thermodynamic 
Limit of the spectral weight through equation (4.24). 

We conclude this section with few remarks on the results previously obtained: 
(i) The physical origin of the rich structure of the spectral weight shown in figure 2 

can be attributed to the presence of a 'pseudo Fermi surface' for spin cxcitations. In 
particular, the bandwidth depends on k due to the vanishing of Z( Q) for IQ1 > n / 2  
which is the signature of the fermion character of spinons. 

(ii) The finite-size scaling of the quasiparticle weight at thc branch cut is charac- 
terized by the exponent 4 (3.12) which gives a much larger weight compared with the 
generic point ( k , w )  where Z - 1 / L  (3.11). It is interesting that the finite-size expo- 
nent (112) of Z at the branch cut coincides with that of the spectral weight A ( k , w )  
close to the branch cut, showing that the frequency departure from the line of singu- 
larities scales as 1/L.  Notice that the strongest singularity occurs at k = I C ,  = r / 2 .  
This particular value of the momentum is singled out by the oscillations in Q ( j )  
which reflect the scattering of spinons in a Heisenberg antiferromagnet. This may be 
considered as the last reminiscence of the Luttinger theorem in this system. 

(iii) We have performed a perturbative calculation including a small superexchange 
J in the one-hole energy spectrum (see equation (4.7)). Although our results strictly 
refer to the U --, m limit, the analytic structure of the Green function persists at finite 
(small) J with relevant changes only at the Fermi momentum. The main qualitative 
difference introduced by a finite superexchange is the prcsence of a linear term in 
the energy spectrum E,,Q corresponding to k = k, and Q - 1112. As a result, 
the (kdependent) one-particle density of states I(dE,,Q/dQ)I-' is always finite in 
the ( k , w )  plane, the band edge singularity (4.25) being cut off at an energy - 1/J. 
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Following the same procedure as before, the resulting one-hole Green function is 
slightly modified for k f &kF. In particular, the locations of the branch cut and 
band edges are shifted by terms of order J and all singularities previously discussed 
are now of the form Iw - W ( ~ ) I - ~ / ~ .  Contrary to the J = 0 case, the exponent of 
the singularity remains the Same at band edges (k = &kF). However the prefactor 
of this singularity changes abruptly with k from 0(1) to O( l / J ) .  

Although the exact exponents of this singularity differ from those found by the 
available approximate theories, the basic physics is reproduced by a few approximate 
treatments and, in particular, the general property of vanishing quasiparticle weight 
in onedimensional Mott insulators has also been derived in [1, 21. However it is 
remarkable that a small superexchange J leads to a 'smoothing' of the k, singularity, 
that in our approach comes from the linear spin-wave excitations and the spin-charge 
dewupling. 

5. Quasiparticle weight at finite doping 

Further information on the dynamical properties of the one-hole excitations at finite 
doping can be obtained by examining the size scaling of the quasiparticle weight Z 
at the bottom of the band and k = k,. This programme has been carried out at 
half-filling in section 4 where the result 2 a L- ' /?  has been obtained. 

At finite density this calculation is involved and has becn attempted by several 
authors . In the following we perform the evaluation of ,7 for N electrons in a L-site 
ring in the U -t CO limit. At density p = N I L ,  the Fermi momentum is kF = r / 2 p  
and the energy of the lowest charge excitation is 

Eh = 2cos (2kF) .  (54 

Analogously to what has been done in section 4 (see equation (4.11)), the quasiparticle 
weight can be factorized to a spin and a charge part: 

(5.2) N Z  z( kF I Eh ) = (O 7 N I  s:=O p&i/z I N? O)H I ($$ 1% IQSF) I ' 
The first term is identical to the one we have evaluated at half-tilling and scales as 
N-'/' independently of lattice size. The calculation of the charge part is straightfor- 
ward but lengthy and is sketched in appendix B. The final result is, at low density, 

with A = 0.9039, which gives 

Z(kF ,  Eh)  - N - ' / * .  (5.4) 

This result has to be contrasted with the quasiparticle weight of the single hole which 
vanishes much faster. The change in the exponent is due to the charge part which 
behaves very differently at half-filling and at finite density. In fact, at p = 1 the 
charge degrees of freedom are frozen, leading to a suppression of the charge matrix 
element 
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6. Conclusions 

In this work, an explicit expression for the one-hole Green function of the one- 
dimensional Hubbard model at U - 03 has been obtained. Our result reveals a rich 
structure in the ( k , u )  plane: The absence of a quasiparticle peak has been confirmed 
by this calculation which also showed the presence of branch cuts at w = f 2  sin IC 
besides the well known band edge singularities predicted by BR. 

From the knowledge of the Green function, we can characterize the dynamical 
properties of one hole in a quantum antiferromagnet. Quantum fluctuations in the 
spin degrees of freedom allow the propagation of the hole contrary to the case of 
a Nbel background where the hole cannot propagate. This effect can be interpreted 
as a consequence of spinon scattering. However, this kind of hole motion is quite 
different from a free propagation due to the power-law behaviour of the hole Green 
function which results from the present calculation. Therefore the onedimensional 
quantum antiferromagnet is not a conventional insulator but shows peculiar features 
which might be generic for Mott insulators. Most of the anomalous properties we 
have found, derive from the occurrence of spin-charge decoupling (4.5) (4.9) which, 
in principle, can be generalized in more than one dimension. 

Although our calculation strictly refers to the U - M limit, the analytic structure 
of the Green function persists at finite (small) J with only minor changes at least for 
k # k,. It is surprising that a finite supcrexchange coupling leads to the weakening 
of the strong band edge singularity at k = i t k ,  present for J = 0. This is due 
both to the occurrence of spin-charge decoupling and to the linear dispersion of the 
spin-wave excitations. 

We have also calculated the quasiparticle weight 2 for one hole in the half-filled 
Hubbard model and at finite doping. In both cases 2 approaches zero as a power law 
when the size of the system is increased. The corresponding exponents coincide with 
those characterizing the singularities of the Green function away from the band edges. 
We believe that this is a general feature of the Green function in any dimension: if 
2 saturates to a constant value we would have cither a conventional band insulator 
or a Fermi liquid, while a vanishing Z for the lowest excitation is the signature of a 
non-Fermi liquid behaviour. ?his property can be useful for numerical investigations 
of the nature of the quasiparticle excitations in strongly correlated electron systems. 

Recent numerical computations of the Green function [23] of the 1-J model 
on finite systems have been unable to detect the branch cut feature we have ob- 
tained from the Bethe ansatz solution of the Hubbard model. This is probably due 
to the smallness of the clusters which have been considercd. However, a peak at 
approximately w = 2 sin k seems to be present in the published data. 

The problem we have solved (i.e. the evaluation of the Green function in a 
Mott insulator) is also important from an experimental point of view because the 
spectral function is directly related to photocmission experiments and it is clearly 
useful to know the predictions of a simple theoretical model on quantities of direct 
experimental interest. Besides, this is, to our knowledge, one of the first examples of 
fully mkroscopic calculations of the Green function for a non-trivial insulator. 

S Sorelh and A Parola 
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Appendix A 

In this appendix the quantity 

qq) = (+sFlcfei9xZ "IC0 [@SF) (AI) 

is evaluated in the asymptotic limit T B 1. 
As is well known [17] the large-distance behaviour of correlation functions of a 

spinless fermion ground state comes from the outmost electrons of @SF with mo- 
mentum close to kkF. For a free spinless fermion state, thc full Slater determinant 
&F = n l k l $ k F  ~110) can be simplified by linearizing the band around kk,. This 
gives rise to the two branches : 

+I,,+ = c;t. for IC - kF 

@I,, = c[ for k - -kF. (4 

GSF is the product of one-particle states in the two branches: 

@SF = @+,SF * @-,SF ('43) 

with 

$*,SF = fl c!lO). (A4) 
k--*EF 

Moreover the density operator N ,  = CJ;: nJ appearing in (Al) splits up into the 
sum: 

where p = N / L  is the total density and pi(p) are density operatoa in the two 
different branches: 

and f J p )  = (1 - eWipr)/(  1 - e-'P).  In the expression (A3) we have neglected less 
singular contribution ( p  - 2kF) and all the sums should be restricted to the regions 
determined by (A2). However the wavevector components Car from the important 
regions k - ?ckF do not affect the correlation functions at large distance. In this way 
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the momentum restriction in (A6) can be neglected and, in this case 1171, the charge 
density fluctuations satisfy boson-like commutation relations: 
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for p > 0 

p: 
where b, t are the usual boson creation operators: [b , ,  bt ] = 6p,p,. 

Due to the factorization properties of the wavefunction &F (A3) and using the 
asymptotic expression for N, (AS), C,(q) can be written in the following way: 

C,(q) =eiqpr{G+(r)H-(r.) t G - ( r ) H t ( ~ ) l  (As) 

GI(r) = ( ~ * , S F l e ' q / L ~ , > a l ~ ( p ) p * ( p ) l ~ , *  , F  ) 

H+(r) = ($*,SF\**.? t ~ ~ ~ / ~ ~ , , ~ l ~ ~ P l P i l F l * *  .o 1 **,sd 

where 

(AS) 

and 

(AW 

G,(r) can be easily evaluated by employing normal order in the right-hand side 
of equation (As), i.e. using the commutation rules in (A7) and noting that 

P+(-P)l$+,SF) = and P - ( P ) ~ $ - , s F )  = 0 for P > 0. (All) 

In this way we get 

We note that the latter asymptotic result for G,(r) is in agreement with the exact 
result for q = r, when G,(r) becomes a Hilbert determinant [IO]. 

The evaluation o l  H,(T) is more involved but almost identical to the calcula- 
tion [I71 of the density matrix by Mattis and Lieb. After normal ordering of the 
exponential factor in H,( r )  we get 

H* ( '1 = G( ') (**,SF l @ l , R W ' C  14"A**,01**FW) (A131 

where Wc, WA contains only boson creation or annihilation operators respectively: 

('414) 1 W A  =exp iq d r h F ( r ) N I ( z )  [ lL 
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with 

and the density operator are: N , ( I )  = (I/L) '&,op,(p)e-iPZ. From these defi- 
nitions: 

(@*,svI(WL)-' = (dJ*,sFI and (WL)-'IdJ*,SF) = I$*,sF). ( A m  

Therefore the last factor in the right-hand side of equation (A13) can be easily 
evaluated: 

and the asymptotic form of the free electron density matrix on the two different 
branches: 

I T .  ('419) t 
(dJ*,SFI+*,~$*,OI$*,S~) 

Collecting the results (A14), (A15) and (A17) and inserting them into the expression 
for CJq) (AS) we obtain the final result for CF(9) as quoted in the text (equa- 
tion (3.9)). 

Appendix B 

In this appendix we sketch the calculation of the charge part of the quasiparticle 
weight equations (5.2) and (5.3) at finite doping. The matrix element which has to 
be evaluated, is 

(cO)SF ( ~ & - ' I C O I $ " F )  (B1) 

where the states I+&) are the spinless fermion states entering the Bethe ansatz solu- 
tion ( 2 2 )  for the ground state of N electrons in the U - 00 Hubbard model. The ex- 
act wavevectors characterizing the spinless fermion states are shown in equations (2.3) 



3608 

and (2.4). By writing the annihilation operator at the origin co, in momentum space 
and using the orbitals defined by equation (2.3), we get 

S Sorella and A Parola 

(B2) 1 ?" N-1 N 
(%)SF = - (-l)'tl(+SF Ik5F)ja a .  ,=-2n-1 

the state is the Slater determinant built with the plane waves defined by 
equation (2.3) where the j, orbital of the hole has been removed. Therefore the 
calculation of the charge matrix element b reduced to the evaluation of the overlap 
between two Slater determinants. Following [lo] the overlap can be expressed as the 
determinant of a (4n 4- 1 )  x (472 + 1) matriu: 

-1 2xi - I + 6)r)  = (1 -ezxi6) [1 - exp ( T(j - I + 6 ) ) ]  

(B3) 

where the phase shift 6 = - n/(4714- 1) - 4 and the indices run in the intervals 
j E [-271 - 1,2n] (but j - #  j,) and I E (-2n??n]. In order to proceed in the 
evaluation of the determinant of the matrix B(Jb)  it is convenient to restrict the 
analysis to the low density limit N /  L << 1 where the calculation can be performed 
exactly. It is known that the form (but not the prcfactor) of the leading singularity 
is independent of density and therefore our result is actually more general than 
this derivation might suggest. By expanding to leading order the exponential in the 
denominator of equation (B3) we find 

sin n6 1 det BLJh) = (-1)" det 

In order to evaluate (cJSF it is useful to introduce an auxiliary Hilbert matrix of 
dimensions ( 4  n t 2 )  x (4 71 t 2 )  

where now both indices belong to the intcrval I-2n - 1,2n] .  
The formal solution of the Wiener-Hopf problem dcfined by the matrix (B5) 

' ; , P I  = &;,-2TL-1 (86) 

can be obtained by Cramer's rule: 

det B(J'  ( -1 )> +' 
x =  ' d e t N  (87) 

which relates the quantity of interest (det B'j )) to the solution of the linear equa- 
tion (B6) (xi). Substituting this result into cquation (B2) we arrive at a compact 
expression for the charge matrix element: 
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The evaluation of the determinant of the Hilbert matrix H is straightforward [21] 
and gives for large N = 471 + 2 : 

det H - AN-" U A"/'' (B9) 

where the prefactor A is given by 

m 

In A = -6'(1 + y )  + cl I n  (1 - $) + $1 - -0.10101 @lo) 
!=I 

and y - 0.5772 is the Euler constant. This calculation does not exhaust the evalua- 
tion of the charge matrix element because an important contribution also comes from 
the sum in equation @S). The sum can be estimated noting that, ffom the definition 
(W, 

2. I = H-'  ).-?*-I 0311) 

and the inverse of a Hilbert matrix a n  be explicitly evaluated [23]. The problem is 
then reduced to the calculation of the finite sum: 

Using the integral representation of Euler's gamma function 

r ( r )  = ~ m d t e - t t ' - l  @13) 

(valid for z > 0) the sum can be performed analytically with the result 

Collecting all terms together, the large-N asymptotic behaviour of the charge matrix 
element is 

where 6 = and the prefactor A - 0.9039 in the low density limit. Notice that 
an important contribution (- N 6 )  to ( c ~ ) ~ ~  a" from the term in equation (B12) 
showing that the evaluation of the charge matrix element cannot be reduced to the 
term in equation (B9) which represents the overlap between two Slater determi- 
nants built with the orbitals (2.3) and (2.4), contrary to what is often claimed in the 
literature. 
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